

Introduction to the Fines2EAF project Dr.-Ing. Thomas Echterhof

Workshop at the 4th European Academic Symposium on EAF Steelmaking 17 June 2021



#### **Project fact sheet**

| Grant number: | 754197                                                                                                             |
|---------------|--------------------------------------------------------------------------------------------------------------------|
| Acronym:      | Fines2EAF                                                                                                          |
| Title:        | Cement-free brick production technology for the use of primary and secondary raw material fines in EAF steelmaking |
| Duration:     | 01.07.2017 – 30.06.2021 / 48 month                                                                                 |

#### **Project partners**

| RWTH Aachen University (RWTH)                   | Politecnico di Milano (POLIMI)       |
|-------------------------------------------------|--------------------------------------|
| Max Aicher Umwelt (MAU)                         | Sidenor I+D (SID)                    |
| MFG Metall- & Ferrolegierungsgesellschaft (MFG) | Stahl- und Walzwerk Marienhütte (MH) |
| Montanuniversität Leoben (MUL)                  | University of Oulu (OU)              |





#### Schematic of the project approach

#### **Project objectives**

3

Objective of the proposal is the economic (re)use of primary and secondary raw material fines in EAF steelmaking and conservation of resources by development of cement-free brick production technology, to be applied directly in the steel plant. This will bring the following advantages: avoid disposal of wastes, enhance the use of primary and the recycling of secondary raw material fines and save costs.



#### Work programme





#### Sampling and characterisation of primary and secondary raw material fines

Comprehensive sampling of residues and by-products was conducted in the steel plants. Additional samples from suppliers and other industrial sectors were added.



![](_page_4_Picture_4.jpeg)

![](_page_4_Picture_5.jpeg)

#### Sampling and characterisation of primary and secondary raw material fines

![](_page_5_Figure_2.jpeg)

Plot of the weight percent passing a specified mesh size

#### Hot stage microscope of LF slag

![](_page_5_Figure_5.jpeg)

![](_page_5_Picture_6.jpeg)

![](_page_5_Picture_7.jpeg)

#### Sampling and characterisation of primary and secondary raw material fines

Inventory of available primary and secondary raw material fines

- 38 materials
- Quantities and current utilization

Characterization included:

- Photographic and micrographic documentation
- XRF analysis
- SEM-EDS investigations
- TG-DSC analysis
- Bulk and true density analysis
- Moisture analysis

7

Particle size distribution analysis

|                                                                            |         |        | wt%   |        |       |       |        |       |        |        |        |        |       |       |       |       |       |        |        |       |        |                  |       |        |       |       |        |        |                                    |                                                |                                      |                         |
|----------------------------------------------------------------------------|---------|--------|-------|--------|-------|-------|--------|-------|--------|--------|--------|--------|-------|-------|-------|-------|-------|--------|--------|-------|--------|------------------|-------|--------|-------|-------|--------|--------|------------------------------------|------------------------------------------------|--------------------------------------|-------------------------|
| label                                                                      | samples | Al2O3  | ĿB.   | cao    | σ.    | C0304 | Cr2O3  | cuo   | Fe2O3  | K20    | MgO    | MnO    | MoO3  | Na2O  | Nb2O5 | NiO   | P205  | PbO    | S      | SeO2  | SiO2   | SnO <sub>2</sub> | sro   | TiO2   | TI2O3 | V205  | W03    | ZnO    | <b>moisture</b> in %<br>t = 0 days | <b>moisture</b> in %<br>(intern)<br>•F 20 days | true density<br>[g/cm <sup>3</sup> ] | bulk density<br>[g/cm³] |
| Black Slag (EAF Slag)                                                      |         | 6,373  |       | 23,802 | 0,022 | 0,056 | 2,957  | 0,022 | 41,897 | 0,028  | 4,613  | 6,570  | 0,017 | 0,210 | 0,062 | -     | 0,693 |        | 0,105  |       | 11,341 | -                | 0,025 | 0,471  |       | 0,230 | 0,021  | 0,018  | 2,630                              | 0,932                                          | 4,028                                | 2,252                   |
| White Slag (Second Metallurgy Slag)                                        |         | 4,839  |       | 53,601 | 0,030 |       | 1,643  | 0,020 | 14,565 | 0,019  | 3, 790 | 2,665  | 0,004 | 0,221 | 0,027 | 0,017 | 0,471 | 0,011  | 0,675  | 0,003 | 15,643 |                  | 0,073 | 0,425  |       | 0,086 |        | 0,074  | 5,950                              | 3,048                                          | 3,270                                | 1,703                   |
| Refractories MgO - C                                                       |         | 2,332  |       | 3,885  | 0,024 |       | 0,075  |       | 1,301  | 0,046  | 87,615 | 0,120  |       | 0,431 |       | 0,011 | 0,723 | 0,010  | 0,326  | 0,002 | 2,541  |                  | 0,005 | 0,044  |       | 1     |        | 0,016  | 0,070                              | 0,095                                          | 3,297                                | 2,459                   |
| Refractories Alumina                                                       |         | 62,537 | 0,002 | 1,697  | 0,108 |       | 0,106  | 0,008 | 2,493  | 0,816  | 1,374  | 660'0  |       | 0,263 | 0,011 | 0,010 | 1,325 | 0,068  | 0,098  |       | 25,757 |                  | 0,064 | 2,710  | 0,000 | ,     |        | 0,015  | 0,110                              | 0,003                                          | 3,376                                | 1,897                   |
| EAF Dust                                                                   |         | 0,578  | 0,055 | 2,909  | 1,270 |       | 0,844  | 0,161 | 43,721 | 0,868  | 1,407  | 3,577  | 0,016 |       | 0,008 | 0,049 | 0,738 | 0,851  | 0,304  |       | 2,245  |                  | 0,005 | 0,058  |       | 0,027 | ,      | 39,767 | 0,310                              | 0,043                                          | 4,541                                | 1,059                   |
| Secondary Dust (Ladle Furnace)                                             |         | 0,932  | 0,081 | 24,211 | 0,750 | ,     | 1,414  | 0,122 | 29,967 | 1,202  | 7,189  | 4,158  | 0,047 |       | 0,004 | 0,385 | 0,583 | 1,835  | 1,266  | 0,120 | 3,966  |                  | 0,029 | 0,092  |       | 0,025 | 0,475  | 18,886 | 0,670                              | 0,589                                          | 3,832                                | 0,875                   |
| Combustion Chamber Dust                                                    | 1       | 1,912  | 0,031 | 9,301  | 0,301 |       | 1, 289 | 0,127 | 64,089 | 0, 192 | 1,950  | 3,455  | 0,029 | 3,171 | 0,029 | 0,056 | 0,631 | 0, 161 | 0, 199 |       | 4, 389 |                  | 0,013 | 0, 202 |       | 0,078 | 0, 194 | 7,779  | 6,950                              | 2,096                                          | 4, 276                               | 2, 193                  |
| Dry Mill Scale                                                             |         | 0,460  |       | 1,158  | 0,016 | 0,166 | 0,519  | 0,108 | 93,344 | 0,024  | 0,370  | 0,691  | 0,044 | 0,406 |       | 0,155 | 0,478 | 0,013  | 0,030  |       | 1,831  |                  | 0,002 | 0,024  |       | 0,025 |        | 0,083  | 0,980                              | 0,405                                          | 5,145                                | 2,992                   |
| Wet Mill Scale                                                             |         | 0,524  |       | 1,373  | 0,033 | ,     | 0,851  | 0,114 | 91,954 | 0,043  | 0,562  | 1,239  | 0,068 | 0,199 |       | 0,200 | 0,486 | 0,008  | 0,058  |       | 2,051  |                  |       | 0,032  |       | 0,067 |        | 0,048  | 5,180                              | 1,647                                          | 3,501                                | 2,414                   |
| Oxi-cutting fines (fines coming<br>from the cutting of billets and blooms) |         | 0,170  | 0,023 | 1,295  | 0,122 | ,     | 0,654  | 0,628 | 92,724 | 0,033  | 0,368  | 0,815  | 0,121 | 0,270 |       | 0,382 | 0,530 | 0,199  | 0,188  |       | 1,065  | 0,050            | ,     | 0,012  |       | 0,000 |        | 0,041  | 4,730                              | 0,228                                          | 4,739                                | 1,824                   |
| Fines from EAF belt additions                                              |         | 0,214  |       | 90,081 | 0,030 | •     | 1,064  | 0,012 | 1,759  | 860'0  | 0,995  | 1,452  |       | 960'0 |       | 0,015 | 0,337 | 0,018  | 0,211  |       | 2,979  |                  | 0,168 | 0,035  |       | 0,025 | ,      | 0,095  | -2,910                             | -3,430                                         | 3,651                                | 1,029                   |
| Fines from LF additions                                                    |         | 0,478  |       | 48,531 | 0,046 | 0,033 | 23,041 | 0,010 | 11,410 | 0,075  | 0,584  | 6,311  | 0,030 | 0,093 |       | 0,101 | 0,391 | 0,009  | 0,100  |       | 8,154  |                  | 0,023 | 0,200  |       | 0,074 |        | 0,147  | -2,510                             | -2,970                                         | 1,915                                | 1,028                   |
| Sludge (water treatment)                                                   |         | 7,008  | 0,213 | 20,972 | 0,074 | 0,018 | 0,601  | 0,448 | 15,906 | 0,223  | 8,777  | 15,168 | 0,035 |       | 0,009 | 0,125 | 1,356 | 2,189  | 0,747  |       | 9,797  | 0,067            | 0,039 | 0,266  |       | 0,059 |        | 14,582 | 44,070                             | 19,133                                         | 2,220                                | 0,790                   |
| Cludes                                                                     | E       | ,26    |       | 048    | )53   | 96(   | ;55    | 60;   | 543    | .55    | .67    | 123    | .17   | :28   | 306   | 10    | '72   | :13    | ;76    | )04   | 213    |                  | 118   | .40    |       | )45   |        | 22(    | 068                                | 451                                            | 8                                    | 68                      |

![](_page_6_Picture_15.jpeg)

![](_page_6_Picture_16.jpeg)

#### Recipe development and evaluation and lab-scale brick production

The steel plants defined priorities for the recipe development based on the inventory:

Max Aicher Umwelt and Marienhütte defined CaO and MgO containing residues as priority materials

→ Reuse as much as possible of ladle furnace slags, spent refractory/mixed residues and collected dusts

Sidenor on the other decided to focus on Fe recovery from materials like oxy-cutting fines, combustion chamber dust and an external grinding sludge. Also, fines from EAF belt additions should be recovered by agglomeration at Sidenor.

![](_page_7_Picture_7.jpeg)

#### Recipe development and evaluation and lab-scale brick production

The binders tested include sodium silicate, polyethylenglycol (PEG), carboxymethylcellulose (CMC), different types of starch, molasses, copolymer binders and superabsorbers.

In addition to the different binding systems and agglomeration parameters like pressing force, pressing time, aging condition etc. also additives have been investigated.  $CaCO_3$ , Bentonite, SiO<sub>2</sub>, SiOxide and sodium silicate hardener have used with sodium silicate binder. Fibres from paper recycling have also been tested to increase the strength of the produced agglomerates.

![](_page_8_Picture_4.jpeg)

Introduction to the Fines2EAF project | Thomas Echterhof | RWTH Aachen University | Workshop on the "(Re)use of primary and secondary raw material fines in the EAF" | 4<sup>th</sup> European Academic Symposium on EAF Steelmaking | 17.06.2021 | Online event

![](_page_8_Picture_6.jpeg)

#### Recipe development and evaluation and lab-scale brick production

Based on the selected materials and priorities of the steel plants and the developed recipes, the lab-scale brick production started and more than 150 recipes have been tested.

| Material                              | N° of recipes tested |
|---------------------------------------|----------------------|
| grinding sludge (dried)               | 17                   |
| grinding sludge (wet)                 | 60                   |
| belt conveyor fines                   | 7                    |
| combustion chamber dust               | 9                    |
| grinding sludge and oxy-cutting fines | 5                    |
| LF slags                              | 17                   |
| dolomitic refractory                  | 2                    |
| ferromanganese carbon filter dust     | 36                   |

![](_page_9_Picture_5.jpeg)

#### Recipe development and evaluation and lab-scale brick production

Recipe development and agglomeration tests grinding sludge

| ExpNo. | Condition | Slag former            | Fibres     | Sodium<br>silicate | Water | Starch  | СМС           | LoW in<br>drop test |
|--------|-----------|------------------------|------------|--------------------|-------|---------|---------------|---------------------|
| Х      | Dry       | 15 % Bentonite         | 3 % Type 3 | 15 %               | 7 %   |         |               | 1.7 %               |
| Y      | Dry       | 15 % CaCO <sub>3</sub> | 3 % Type 3 | 15 %               | 7 %   |         |               | 3.9 %               |
| EM     | Wet       |                        |            |                    |       | 10 % T1 |               | 2.2 %               |
| AA     | Wet       |                        |            |                    |       | 10 % T2 |               | 7.4 %               |
| EO     | Wet       |                        |            |                    |       |         | 14.3 % T1     | n.a.                |
| EN     | Wet       |                        |            |                    |       |         | 14.3 % T2     | n.a.                |
|        |           |                        |            |                    |       | CM      | IC - Carboxym | ethyl cellulose     |
|        |           |                        | E          |                    |       | AS-     |               | before              |
| (X)    |           |                        |            | er Mit             |       |         |               | after d<br>(3 time  |

Introduction to the Fines2EAF project | Thomas Echterhof | RWTH Aachen University | Workshop on the "(Re)use of primary and 11 secondary raw material fines in the EAF" | 4th European Academic Symposium on EAF Steelmaking | 17.06.2021 | Online event

![](_page_10_Picture_5.jpeg)

![](_page_10_Picture_6.jpeg)

rop test es from 5 m)

#### Recipe development and evaluation and lab-scale brick production

Recipe development and agglomeration tests – combustion chamber dust

| Exp<br>No. | Condition | Slag former             | Fibres       | Sodium<br>silicate | Water | LoW in drop test |
|------------|-----------|-------------------------|--------------|--------------------|-------|------------------|
| CE         | Wet       | 14 % CaCO <sub>3</sub>  | 1.2 % Type 3 | 14 % Type 1        | 4.7 % | 15.9 %           |
| CF         | Wet       | 6.7 % CaCO <sub>3</sub> | 1.6 % Type 3 | 6.7 % Type 1       | 2 %   | 23.4 %           |
| CG         | Wet       | 15 % CaCO <sub>3</sub>  | 1.3 % Type 3 | 15 % Type 2        | 7.1 % | 1.2 %            |
| СН         | Wet       |                         | 1.3 % Type 3 | 15 % Type 2        | 7.1 % | 11.8 %           |

![](_page_11_Picture_4.jpeg)

before

after drop test (2 times from 5 m)

![](_page_11_Picture_7.jpeg)

![](_page_11_Picture_8.jpeg)

![](_page_11_Picture_9.jpeg)

#### Acknowledgement The project receives funding from the Research Fund for Coal and Steel under grant agreement No 754197. The presentations reflect only the authors' views. The European Commission is not responsible for any use that may be made of the information they contain.

![](_page_12_Picture_1.jpeg)

### Thank you for your attention

Dr.-Ing. Thomas Echterhof RWTH Aachen University Department for Industrial Furnaces and Heat Engineering Kopernikusstraße 10 52074 Aachen Germany echterhof@iob.rwth-aachen.de

![](_page_12_Picture_4.jpeg)

![](_page_12_Picture_5.jpeg)

![](_page_12_Picture_6.jpeg)